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Abstract

We present a reformulation of the Bayesian approach to inverse problems, that seeks to accelerate Bayesian inference
by using polynomial chaos (PC) expansions to represent random variables. Evaluation of integrals over the unknown
parameter space is recast, more efficiently, as Monte Carlo sampling of the random variables underlying the PC expansion.
We evaluate the utility of this technique on a transient diffusion problem arising in contaminant source inversion. The
accuracy of posterior estimates is examined with respect to the order of the PC representation, the choice of PC basis,
and the decomposition of the support of the prior. The computational cost of the new scheme shows significant gains over
direct sampling.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Inverse problems, broadly defined, arise from indirect observations of a quantity of interest [1,2]. A phys-
ical system may be described by a forward model, which predicts some measurable features of the system given
a set of parameters. The corresponding inverse problem consists of inferring these parameters from a set of
observations of the features.

The simplicity of this definition belies many fundamental challenges. In realistic applications, data is almost
always noisy or uncertain. Also, the forward model may have limitations on its predictive value; i.e. it may be
an imperfect or imprecise model of the physical system. Furthermore, as highlighted in [2], inverse problems
are often non-local and/or non-causal. In a forward model, solution values usually depend only on neighboring
regions of space and affect only future values in time. Inverting these models, however, may (implicitly) require
time-reversal or deconvolution. In mathematical terms, these properties render inverse problems ill-posed. No
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feasible parameters may match the observed data (existence), or a multiplicity of model parameters may fit the
data (uniqueness). Small errors in measurement can lead to enormous changes in the estimated model
(stability).

The Bayesian setting for inverse problems offers a rigorous foundation for inference from noisy data
and uncertain forward models, a natural mechanism for incorporating prior information, and a quantita-
tive assessment of uncertainty in the inferred results [3,4]. Indeed, the output of Bayesian inference is not a
single value for the model parameters, but a probability distribution that summarizes all available infor-
mation about the parameters. From this posterior distribution, one may estimate means, modes, and
higher-order moments, compute marginal distributions, or make additional predictions by averaging over
the posterior.

Bayesian approaches to inverse problems have seen much recent interest [3,5,2], with applications ranging
from geophysics [6,7] and climate modeling [8] to heat transfer [9,10]. In all of these applications, the primary
computational challenge remains one of extracting information from the posterior density [11,12]. Most esti-
mates take the form of integrals over the posterior, which may be computed with asymptotic methods, deter-
ministic methods, or sampling. Deterministic quadrature or cubature [13,14] may be attractive alternatives to
Monte Carlo at low to moderate dimensions, but Markov chain Monte Carlo (MCMC) [15-17] remains the
most general and flexible method for complex and high-dimensional distributions. All of these methods, how-
ever, require evaluation of the likelihood or posterior at many values of the model parameters m. In this set-
ting, evaluating the likelihood requires solving the forward problem. With complex forward models, such as
those described by partial differential equations, each single evaluation can be a computationally expensive
undertaking [18]. For Monte Carlo simulations requiring 10°~10° samples, the total cost of these forward eval-
uations quickly becomes prohibitive.

This paper presents a new formulation designed to accelerate evaluation of Bayesian integrals and other
characterizations of the posterior. We develop methods to substantially reduce the cost of evaluating the pos-
terior density, based on a stochastic spectral reformulation of the forward problem. These methods have their
roots in uncertainty quantification (UQ) using polynomial chaos (PC) expansions [19-21].

The efficient forward propagation of uncertainty—i.e. from model parameters to model predictions—is a
central challenge of uncertainty quantification. A simple approach is Monte Carlo simulation: sampling
known distributions of the model parameters to obtain statistics or density estimates of the model predictions.
Again, each sample requires a solution of the forward model, and with complex models, this sampling
approach is computationally intensive. A useful alternative is to employ spectral representations of uncertain
parameters and field quantities, specifically polynomial chaos (PC) expansions for random variables and sto-
chastic processes. The polynomial chaos [19,22-26] was first defined by Wiener [22]; successive polynomial
chaoses give rise to a functional basis consisting of Hermite polynomials of Gaussian random variables
[27]. Ghanem and Spanos [19] describe the implementation of polynomial chaos in a finite element context.
These stochastic finite element approaches have found numerous modeling applications, including transport
in porous media [28], and solid [29,30] or structural [31] mechanics. Le Maitre et al. [20,32] extended these
techniques to thermo-fluid systems. Xiu et al. [33] used generalized polynomial chaos [34] for uncertainty
quantification in fluid-structure interactions and in diffusion problems [35], while Debusschere et al. [36] used
polynomial chaos to characterize uncertainty in electrochemical microfluid systems.

We will show that Bayesian estimation is intimately related to the forward propagation of uncertainty. In
particular, using PC to propagate a wide range of uncertainty—e.g. prior uncertainty—through the forward
problem and sampling the resulting spectral expansion enables a substantially more efficient Bayesian solution
of the inverse problem. To this end, we employ an “intrusive’ stochastic spectral methodology, in which poly-
nomial chaos representations of the unknown parameters lead to a reformulation of the governing equations
of the forward model. This process involves: (1) constructing PC expansions g(&) for each unknown param-
eter, according to probability distributions that include the support of the prior; (2) substituting these expan-
sions into the governing equations and using Galerkin projection to obtain a coupled system of equations for
the PC mode strengths; (3) solving this system; and (4) forming an expression for the posterior density based
on the resulting PC expansions of forward model predictions, then exploring this posterior density with an
appropriate sampling strategy. In this scheme, sampling can have negligible cost; nearly all the computational
time is spent solving the system in step 3. Depending on model non-linearities and the necessary size of the PC
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basis, this computational effort may be orders of magnitude less costly than exploring the posterior via direct
sampling.

Other attempts at accelerating Bayesian inference in computationally intensive inverse problems have relied
on reductions of the forward model. Wang and Zabaras [10] use proper orthogonal decomposition (POD) [37]
and Galerkin projection to speed forward model calculations in a radiative source inversion problem. The
empirical basis [38] used for model reduction is pre-constructed using full forward problem simulations.
The choice of inputs to these simulations—in particular, how closely the inputs must resemble the inverse solu-
tion—can be important [10]. Balakrishnan et al. [39] introduce a PC representation of the forward model in a
groundwater transport parameter identification problem, but obtain the PC coefficients by collocation; again,
this process depends on a series of “snapshots™ obtained from repeated forward simulations.

A different set of approaches, found in the statistical literature, retain the full forward model but use
reduced models to guide and improve the efficiency of MCMC. Christen and Fox [40] use a local linear
approximation of the forward model to improve the acceptance probability of proposed moves, reducing
the number of times the likelihood must be evaluated with the full forward model. This “approximate
MCMC” algorithm is shown to yield the same stationary distribution as a standard Metropolis—Hastings
chain. Higdon et al. [18] focus on the estimation of spatially distributed inputs to a complex forward model.
They introduce coarsened representations of the inputs and apply a Metropolis-coupled MCMC scheme [41]
in which “swap proposals’” allow information from the coarse-scale formulation, which may be computed
more quickly, to influence the fine-scale chain. In contrast to the present formulation, however, all of the
approaches cited above require repeated solutions of the full-scale deterministic forward model.

We will demonstrate our new formulation on a transient diffusion problem arising in contaminant source
inversion, and compare the efficiency of the method and the accuracy of posterior estimates to direct evalu-
ation of the posterior.

2. Formulation
2.1. Bayesian inference for inverse problems

Consider a forward problem defined as follows:
d ~ G(m) (1)

Here m is a vector of model parameters and d is a vector of observable quantities, or data. The forward model
G yields predictions of the data as a function of the parameters. In the Bayesian setting, both m and d are
random variables, and for the remainder of this paper we will take these random variables to be real-valued.
We use Bayes’ rule to define a posterior probability density for the model parameters m, given an observation
of the data d:

p(djm)p,, (m)
Pmid) = dm)p, (m)dm @

In the Bayesian setting, probability is used to express knowledge about the true values of the parameters. In
other words, prior and posterior probabilities represent degrees of belief about possible values of m, before and
after observing the data d.

Data thus enters the formulation through the likelihood p(djm), which may be viewed as a function of m:
L(m) = p(djm). A simple model for the likelihood assumes that independent additive errors account for the
deviation between predicted and observed values of d:

d = G(m) + ¢ (3)

where components of # are i.i.d. random variables with density p,. A typical assumption is #; ~ N(0, a?), in
which case p(djm) becomes N(G(m),s°I). The likelihood is thus

L(m) = Hp”(d" — Gi(m)) (4)
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In this simple model,  may encompass both measurement error (e.g. sensor noise) and model error—the extent to
which forward model predictions may differ from “true’ values because of some unmodeled physics of the system.
Any additional information on the model parameters may enter the formulation through a suitably-defined
prior density, p,,(m). Prior models may embody simple constraints on m such as a range of feasible values, or
may reflect more detailed knowledge about the parameters (shapes, correlations, smoothness, etc.). In the
absence of additional information, one may simply choose a prior that is uninformative.
Bayesian estimation typically gives rise to integrals over the posterior density:

- / #(m)L(m)p, (m)dm (5)

The posterior expectation of a function f, for instance, is E,f = I[f]/I[1]. Though more sophisticated means of
estimating such integrals will be discussed later, we note here that a conceptually simple method of obtaining
posterior estimates is Monte Carlo sampling. If independent samples m"’ can be drawn from the prior, then a
Monte Carlo estimate of (5) is

nm:ii%ﬂwwﬂm@—@m%) (6)

If parameters ¢,,, of the prior density p,,(m|¢,,) or parameters ¢, of the error model p,(#,|¢,) are not known a
priori, they may become additional objects for Bayesian inference. In other words, these hyperparameters may
themselves be endowed with priors and estimated from data [3]:

pm, ¢,,,|d) < p(djm, ¢, )p,, (m|¢, )p($,)p(d,) ()

The resulting joint posterior over model parameters and hyperparameters may then be interrogated in various
ways—e.g. by marginalizing over the hyperparameters to obtain p(m|d); or first marginalizing over m and
using the maximizer of this density as an estimate of the hyperparameters; or by seeking the joint maximum
a posteriori estimate or posterior mean of m, ¢,, and ¢, [42,3].

2.2. Polynomial chaos expansions

Let (Q,%, P) be a probability space, where Q is a sample space, Z is a g-algebra over Q, and P is a prob-
ability measure on %. Also, let {&;(w)}.2, be a set of orthonormal standard Gaussian random variables on €.
Then any square-integrable random variable X : Q@ — R has the following representation:

_aoFo+Za,1F1 i +Z Za,l,zl“z &L & +ZZZ“HW &Gy i) e (8)

i1=1 ih= i1=1 =1 =

where I',, is the Wiener polynomial chaos of order p [22,19,43]. This expansion may be re-written in a more
compact form

X(0) = iakwk(gl,gz,...) 9)

where there is a one-to-one correspondence between the coefficients and functionals in (8) and (9) [19]. For the
standard normal random variables £; chosen above, orthogonality of successive I', requires that the I', be mul-
tivariate Hermite polynomials; both these and the corresponding ¥, may be generated from univariate Her-
mite polynomials by taking tensor products.

Of course, in computations it is not useful to represent a random variable with an infinite summation, and
one truncates the expansion both in order p and in dimension n—i.e. by choosing a subset & = {&; }/_, of the
infinite set {&;}, 4; € N. The total number of terms P in the finite polynomial chaos expansion

.
w) =Y W& é, .8 (10)
k=0

is
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Sh a

Polynomial chaos (PC) expansions have been generalized to broader classes of orthogonal polynomials in
the Askey scheme, each family resulting from a different choice of distribution for the &, [34,44]. For each of
these choices, orthogonality of the polynomials ¥,(£) with respect to the inner product on L*Q) is
guaranteed:

<Wm=/%W@Wﬁ@WH@=/WﬁWﬂM@%=%W% (12)

where, in the second (Riemann) integral, w(£) denotes the probability density of £€. This property can be used
to calculate the truncated PC representation of a random variable f € L*(Q) by projecting onto the PC basis:

P+l=

P
- X))V
Fo) =Y nw@. =00 (13)
k=0 <Ylk>
This orthogonal projection minimizes the error ||f — f]| on the space spanned by {¥;};_,, where | -|| is the

inner-product norm on L*((Q).

Suppose that the behavior of f'can be expressed as ((f, X) = 0, where ¢ is some deterministic operator and
X(w) is a random variable with a known PC expansion X = > "/x,¥,. Substituting PC expansions for fand X
into this operator and requiring the residual to be orthogonal to ¥, for j=0... P yields a set of coupled,
deterministic equations for the PC coefficients f:

<@<Zﬁcwk;2xiq’i> lPj> =0, j=0...P (14)
3 i

This Galerkin approach is known as “intrusive’ spectral projection [32], in contrast to “non-intrusive’ ap-
proaches in which the inner product {f{ X)¥;) is evaluated by sampling or quadrature, thus requiring repeated
evaluations of f{X) corresponding to different realizations of & [45].

In practice, we employ a pseudospectral construction to perform intrusive projections efficiently for higher
powers of random variables, e.g. {X) = X, j > 3, and have developed additional techniques for non-polyno-
mial functions f. These operations are incorporated into a library for ““stochastic arithmetic,”” detailed in [21].

2.3. Efficient evaluation of the posterior

2.3.1. Sampling from the prior

We now connect ideas introduced in the two preceding sections to formulate a computationally efficient
scheme for Bayesian inference. Suppose the model parameters have been endowed with a prior density
pm(m). Knowing this density, one can construct a corresponding polynomial chaos expansion for each com-
ponent m; of the random vector m:

mi(&) =Y muPi(&) (15)
pry

where the dimension of € is at least equal to the dimension of m.

Next, we introduce these PC expansions into the forward model and use Galerkin projection to obtain a PC
representation for each component of the predicted data G(m). Here G(m) denotes the ith component of G(m)
and G,(&) is its (approximate) PC representation:

P
Gi(§) = du'Pi(&) (16)
=0
Now consider a generic integral over the unnormalized posterior density, given in (5). Drawing samples &)

from the distribution of & will yield samples of m from the prior, calculated according to (15). But the corre-
sponding forward model prediction, G(m), can now be computed very cheaply, simply by substituting the same
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& into (16). In general, evaluating this (P + 1)-term expansion will be significantly faster than solving the for-
ward model for each sample. The prediction G(&) obtained in this fashion then replaces G(m) in the likelihood
L(m). For the simple likelihood proposed in (4), an n-sample Monte Carlo estimate of the integral becomes:

Ll = Xﬂ m(£")) Hm@— éwﬂ (17)

2.3.2. Sampling from alternate distributions

Polynomial chaos reformulations of a Bayesian estimate need not be limited to expansions for which m has
density p,,, as specified in (15), however. Consider a different set of PC expansions, m = g(&£), where each com-
ponent m; = g; is given by

=Y eul@) (%)

Let the g be chosen such that g(&) has probability density g, where the support of ¢ includes the support of
the prior. Drawing samples & from the distribution of ¢ will now yield samples of m drawn from ¢. A Monte
Carlo estimate of the integral in (5) now becomes:

; . ‘:(/')
Tl = Z[ &) [T (0~ Gt ))pqi((ggém))))] (19)

If ¢ is chosen to sample from regions where |[f{m)|L(m)p,,(m) is relatively large, then the estimate in (19)
amounts to importance sampling [46,47]. The variance of f(m)L(m)pm(Ln)/q(m), where m ~ ¢, will be reduced
by this sampling strategy and consequently the variance of the estimator 7,[f] will be reduced as well. In the pres-
ent context, of course, evaluating the likelihood of each sample via PC expansions is already inexpensive, so
importance sampling may not yield significant gain. However, freedom in the choice of g(£) has a more
immediate utility. If the prior distribution is such that it is difficult or inconvenient to write a PC expansion
for m with density p,,, the ability to choose a density ¢ that may be simpler than p,, ensures flexiblity in prior
modeling.

2.3.3. Change of variables and MCMC

The essence of the two sampling schemes presented above is that the likelihood, when computed using PC
expansions, becomes a function of & rather than of m. Thus we sample £ to generate samples of m from a spec-
ified distribution and simultaneously use & to compute the likelihood of each sample. Implicit in these schemes
is a change of variables from m to &, and it is fruitful to consider this change explicitly, as follows:

/ S (m)L(m)p,, (m)dm = [ f( (8))L(g(&))p,(g(&))| det Dg(&)[dE (20)
Here, Dg denotes the Jacobian of g. Maklng this change of variables explicit imposes certain constraints on the
transformation g, namely (1) that Z,, = g~!(.#), the inverse image of the support of the prior, be contained
within the range of &, and (2) that g be a differentiable transformation from =, to .# with a differentiable in-
verse (i.e. that g be a diffeomorphism from Z,, to .#).The first constraint is not new; indeed, in the preceding
two sections, it is necessarily satisfied by a PC expansion that reproduces samples of m from the desired dis-
tribution, p,, or ¢. The latter constraint, however, limits g to rather simple PC expansions—for instance, linear
transformations of £.' But this limitation is not a great liability, as the transformed integral in (20) can now be

! This condition is not required by the sampling schemes in Sections 2.3.1 and 2.3.2. If, however, it is satisfied by g in Section 2.3.1 then
we have

Pn(8(8))] det Dg(&)| = w(¢)

where w is defined in (12). An analogous condition holds true for ¢ in Section 2.3.2, again when g is a diffeomorphism from =, to .Z.
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evaluated by any suitable sampling scheme in &-space—in particular, by Markov chain Monte Carlo
(MCMQ).

MCMC encompasses a broad class of methods that simulate drawing samples from the posterior [17,48,46],
and thus can be used to directly estimate the posterior expectation of f:

Eof = [ f(m)r, (m)dm 1)
where T, denotes the normalized posterior density of m
T, (m) o< Ly, (m)p,, (m) (22)

The subscript on L, emphasizes that the likelihood is here a function of m. The change of variables from m to
& can be expressed compactly as

k.. f = [ETEg (f © g) (23)
where ¢ is the posterior density in £-space:
me(§) o< Ln(8(8))p,(8(£))] det Dg(&)] (24)

As before, we would like to use the PC representation of G to accelerate evaluations of the posterior. We
first introduce the following notational convention: any quantity computed by projection onto a finite PC
basis—whether a forward model prediction, likelihood, or posterior density—is distinguished from its
“direct” counterpart with a tilde. Thus, we seek samples from the surrogate posterior i;:

R:(8) o Li(@)pa (8(8)) | det De(O)x [ [ (4 = Gi(@) ) (2)) et D) (25)

The likelihood is now a function of ¢. Since Metropolis-Hastings algorithms require knowledge only of the
unnormalized posterior density, (25) is sufficient to simulate samples & from the posterior on &-space. Elim-
inating b burn-in samples, the posterior expectation of fis estimated by an ergodic average:

Er,./ n_bZ(fog )(EY) (26)

j=b+1

Note that an MCMC chain could just as easily be run on m-space, simulating samples from the surrogate pos-
terior 7, o< (L:og™!) - p,,. But this expression emphasizes why an 1nvert1ble g must be used with MCMC;
otherwise the argument to L corresponding to a given chain position m”’ would be ill-defined.

Advantages of MCMC over the simple Monte Carlo schemes in Sections 2.3.1 and 2.3.2 are several. In
many applications, a well-designed MCMC algorithm can offer far better sampling efficiency than sampling
from the prior or from some alternate distribution ¢ # m,,, despite the fact that MCMC samples are serially
correlated [49]. In the present context, however, the value of improved sampling efficiency is tempered by the
fact that samples are rendered inexpensive by the PC reformulation. However, MCMC offers additional ben-
efits. Because MCMC directly simulates the posterior, it is simple to extract marginal densities for individual
components of m with the aid of kernel density estimation [50]. Also, MCMC eliminates the need to calculate
the posterior normalization factor I[1]. Using (25) to evaluate the posterior, further particulars of the MCMC
algorithm we adopt are essentially independent of the PC formulation and thus we reserve their presention for
Section 3.5.

The choice of g and of the PC basis {¥(&)};_,, on the other hand, will have a crucial impact on the accu-
racy and cost of PC-reformulated posterior estimates and predictions. Because it is the initial PC representa-
tion of m—its distribution defining the stochastic forward problem—g(&) will directly affect G, as will the
order and stochastic dimension of the PC basis used in Galerkin projections. The “surrogate” posterior 7,
obtained by replacing direct evaluation of the likelihood L(m) with a likelihood written in terms of G(¢&), is
then at the heart of any PC-induced errors in the three sampling schemes discussed above. Whether we write
this posterior in terms of £ (e.g. ;) or m (e.g. 7, if g is invertible), the difference between m and @ completely
captures the impact of the polynomial chaos representation of forward model predictions on the inverse
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solution. We will explore the dependence of this posterior error on g, p, and the distribution of &—i.e. the type
of PC basis—in Sections 3.3 and 3.6.

2.4. Decomposition of parameter space

When a component of the forward solution depends very steeply on an uncertain parameter, a PC basis of
smooth, global polynomials may require increasingly high order to provide an accurate solution of the sto-
chastic forward problem. In the diffusion-driven forward problem to be considered here, many terms will
be required to represent a sharply-localized source with broad prior uncertainty in its location. In the limit,
when solutions are discontinuous with respect to an uncertain parameter, e.g. in the neighborhood of a critical
point, a global PC basis may be unsuitable [51].

Several methods have been proposed to address this difficulty [S1-53]. A PC basis of Haar wavelets was
constructed in [51], then generalized to a multi-wavelet basis in [52]; both of these methods effectively resolved
stochastic systems with multiple bifurcations. Computational efficiency of the latter scheme was improved by
block-partitioning of the uncertain parameter space. We adopt a similar, but non-adaptive, partitioning
scheme here. The support .# of the prior, or equivalently the range of m, is decomposed into N, non-overlap-
ping domains

Np
M=), O =0 if bE (27)
b

We seek a corresponding decomposition of the prior density p,,(m), and thus of the Bayesian integral I[f]in (5),
as follows:

P(m) {pm(m) me ./’

b
0 m¢ /4 (28)
Ny
pu(m) = Xhlp”(m)
Note that the densities ph(m) are unnormalized on each domain .#”, so that
Ny Ny
11 =Y 111 =Y [ rmtmp (m)dm (29)
b b

This partitioning allows the construction of a separate polynomial expansion g’(&) for m on each block, and
thus a different version of the likelihood L: in each integral I’[f] contributing to (5). What does this imply for
g”? Again, we identify three cases, corresponding to the sampling schemes in Sections 2.3.1, 2.3.2, and 2.3.3.

When sampling from the prior, we seek g” so that m has density proportional to p(m). Sampling & will then
yield samples from the prior on each block.

When sampling from an alternate distribution, e.g. from N, densities q”(m), we simply require that the sup-
port of each ¢” contain .#”. In particular, the supports of each ¢” need not be disjoint; the definition of p”(m)
above ensures zero posterior density outside of each domain.

Finally, in an MCMC scheme, we work directly with the partition of = and allow the chain to transition
from block to block according to the proposal distribution.

Le Maitre et al. [52] provide criteria for adaptively refining the partitions based on the local variance of the
solution. Here, because the inverse problem to be considered has a simple symmetry in both its priors and its
computational domain, we will take a fixed partition of .# = [0, 1] x [0, 1] into four equal quadrants.

3. Results

We demonstrate the stochastic spectral formulation of Bayesian inference by inverting for the source field
in a transient diffusion problem.
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One practical context of this inverse problem lies in contaminant source inversion [54]. Given a sparse set of
concentration measurements—from sensors scattered throughout some space, for instance—one would like to
find the sources of a toxin that has spread through the ambient medium. Specific parameters to infer include
the number of sources and their possibly time-dependent strengths and locations. Though convective trans-
port can play a role in many practical source inversion problems, we will limit our attention here to a purely
diffusion-driven inverse problem in order to focus on the demonstration and analysis of the new formulation.
Diffusive source inversion problems themselves arise in the context of porous media flows [55] and heat con-
duction [56-60].

3.1. Source inversion under diffusive transport

We begin by defining the deterministic forward problem G(m), since this is the basis for the general Bayes-
ian approach to inverse problems described in Section 2.1 and for the stochastic forward problem described in
Section 2.3.

Consider a dimensionless diffusion equation on a square domain S =1[0,1]x[0,1] with adiabatic
boundaries:

Ou _ p o~ Sy =X
a—t—Vu—f—; exp |~ [1—H(t—T))]

2na?

(30)
Vu-n=0 onadS

u(x,0) =0

The source term in (30) describes /N localized sources, each one active on the interval ¢ € [0, 7;] and centered at
1 € S with strength s; and width ¢;,. Note that the location, size, and shutoff time of each source enter the prob-
lem non-linearly.

For the purposes of an initial demonstration and to allow direct visualization of the posterior, we restrict
our attention to an inverse problem in two dimensions. Thus we fix N = 1; prescribe 7, s and o; and leave the
source location y = (mg,m;) unknown. For any given value of m, we solve the PDE in (30) using a finite dif-
ference method. The u-field is described on an uniform grid with spacing 4 = 0.025. Second-order centered
differences are used to discretize the diffusion terms. Time integration is via an explicit, second-order-accurate,
Runge-Kutta—Chebyshev (RKC) scheme [61] with Az = 0.002. The number of substeps in the RKC scheme is
automatically determined by stability constraints upon setting ¢, the damping parameter that controls the
extent of the stability region, to 2/13 [62]. Numerical resolution studies were conducted to validate the present
choices of 4 and At.

Fig. 1. Scalar field u in the deterministic forward problem, for (m,m,) = (0.25, 0.75). (a) = 0.05 and (b) ¢ = 0.15.



Y.M. Marzouk et al. | Journal of Computational Physics 224 (2007) 560-586 569

The forward model G(m) predicts the value of the field u(x, ¢) at specific locations and times. Below, unless
otherwise specified, G will provide predictions on an uniform 3 x 3 grid covering the domain S at two succes-
sive times, ¢ = 0.05 and ¢ = 0.15. The inverse problem thus consists of inferring the source position from noisy
measurements at these locations and times. We let independent zero-mean Gaussian random variables
n; ~ N(0,¢%) express the difference between “real-world” measurements and model predictions, as specified
in (3). In the examples below, we choose ¢ = 0.4 unless otherwise specified. Priors simply constrain the source
to lie in the domain S, i.e. m; ~ U(0, 1). Again, in the interest of simplicity, we make no attempt at hyperpa-
rameter estimation for either the noise model or the prior distribution.

Fig. 1 shows the u-field resulting from a representative value of m: (ng,m;) = (0.25,0.75), with T = 0.05,
s =0.5 and ¢ = 0.1. Though the solution is initially peaked around the source, note that it flattens at the later
time once the source is no longer active. As the measurement time (¢ > T) — oo, the inverse problem becomes
increasingly ill-conditioned. Measurement noise will overwhelm any residual variation in the u-field resulting
from the particular location of the source.

3.2. Stochastic spectral solution of the forward problem

The accuracy, and computational expense, of the stochastic spectral solution of the forward problem
depend on the order of the PC basis used. For computational efficiency, the requisite PC order can be reduced
by partitioning the domain and solving an independent forward problem, with a smaller range of input uncer-
tainty, on each subdomain. Because the present problem has a simple symmetry in both its priors and its com-
putational domain, we take a fixed partition of the prior support .# = [0, 1] x [0, 1] into four equal quadrants
A", On each of these quadrants, we prescribe a PC expansion m = g”(&) consisting of multivariate Legendre
polynomials and uniformly distributed &; ~ U(—1,1). In particular, we choose PC coefficients such that each
g’(&) has an uniform probability density on .#° and zero probability density elsewhere. On each quadrant, m is
thus distributed according to the (normalized) prior density p®(m) given in (28), e.g.

era=(2) (5 %))

and so on for b =2.. 4.

The stochastic forward problem is then solved four times, once for each block of the prior support. On each
block, we introduce the PC expansion y = m = g”(€) into (30) with N = 1 and, using Galerkin projections and
the same finite-difference/RKC scheme as in the deterministic problem, obtain a PC expansion for each pre-
diction of the scalar field, G?(¢). These predictions are random variables u(x;1;,&(w)), giving the value of the
scalar field at each measurement location and time (x;,;).

Note that the source term in (30) may be factored into a time-dependent component and a stationary
component:

N 2 N
s 1 — X
E 2n;zexp<—7| ’202>[1 H(t—T))] quh )s(t, T)) (32)
]

=1 ! =1

The stationary component ¢(X, x) contains the exponential of a random variable, and its PC representation is
thus expensive to compute. In the interest of efficiency, we evaluate this term once at each grid point x,,, and
store the resulting array of PC expansions for use at each subsequent timestep. So that comparisons of com-
putational cost remain fair, we also factor the source term when solving the deterministic forward problem,
again pre-computing the stationary part; in other words, the Gaussian source profile is evaluated only once
during time integration of (30) for a given source location.

Solutions of the stochastic forward problem may be interrogated in several ways. Fig. 2 shows the predicted
value of the scalar field at a particular measurement location and time, u(x,—3 = 0.0, y,—3 = 0.5, t;,_3 = 0.15), as

a function of &. This surface is a single component of the stochastic forward problem solution, ai(é) for i =3,
and is obtained with PC bases of increasing order (p = 3, 6, and 9). Partition of the prior support into quad-
rants b = 1.. .4 is indicated on each plot. Convergence is observed with increasing p. While there is no guar-
antee of continuity or smoothness of the solution between neighboring blocks, both seem to be achieved at
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sufficient order. The pointwise error in these forward solutions is shown in Fig. 3, again for i = 3. Here, error is
defined as the difference between the PC expansion of the forward solution and the exact solution of the deter-
ministic forward model G(m), with argument m corresponding to the appropriate quadrant 4 and value of &:

err (&) = GY(&) — G,(¢"(%)) (33)

Once again, the error becomes negligible at sufficient order.

Since the input m = g(&) to the forward model is a random variable, any forward model output G(m) is also
a random variable. The density of these forward model outputs is an useful diagnostic and may be estimated in
one of two ways. A direct (and computationally expensive) method is to sample m and solve the forward prob-
lem for each sample, forming a normalized histogram from the resulting collection of forward model outputs.
Alternatively, one can sample & and substitute it into the PC expansion G,(£), again forming a histogram of
the resulting values. This process essentially weighs the surface response in Fig. 2 according to the probability
distribution of €. The resulting density estimates for Gz are shown in Fig. 4. While a lower-order PC basis
(p = 3) results in a poor density estimate, the probability density converges to its true shape—obtained by
the direct method—as p increases.

The probability densities computed above represent the propagation of prior uncertainty through the for-
ward problem. Accordingly, we may endow them with an additional interpretation. Fig. 5 shows the proba-
bility density of u at a single measurement location (x = 0.0, y = 0.0) but at two successive times: = 0.05 and
t=0.15. As in Fig. 4, we observe convergence of the PC-obtained density to its “direct” counterpart with
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Fig. 2. A single component of the stochastic forward problem solution, G;(€), shown as a surface response on four quadrants of prior
support. (a) p =3, (b) p=06 and (c) p =9.
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Fig|3. Pointwise error in the solution to the stochastic forward problem, defined in
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Fig. 4. Probability density of a single measurement, G3(m)=u(x = 0.0, y =0.5, t = 0.15), given prior uncertainty in the source location.
Densities resul i C expansions at varying order; compared to direct method.
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Fig. 5. Probability density of the scalar u(x = 0.0, y = 0.0) at two successive times, given prior uncertainty in the source location. (a)
t=0.05 and (b) 1 =0.15.

A quantitative assessment of the error in the posterior density is obtained by considering the Kullback—Lei-
bler (KL) divergence of =, from 7,,:

D(wt||rn) = /// 7(m) IOgiEE;

dm (34)

Fig. 7 plots D(f,,||x,,) for PC bases of increasing order p. In terms of KL divergence, we observe an exponen-
tial rate of convergence of the surrogate posterior 7, to the true posterior.

3.4. Posterior sampling and speedup

Practical Bayesian computations must explore the posterior by sampling, and it is here that we expect the
PC approach to achieve significant speedup over its direct counterpart. Fig. 8 shows the computational time
for Monte Carlo estimation of the posterior mean as a function of the number of samples n. Since g”(&) is
chosen to have density proportional to p°(m), our Monte Carlo estimator uses samples from the prior, as
described in Section 2.3.1. In other words, the posterior mean is evaluated using (17), with
E.m = 7,[m]/T,[1]. We use a sixth-order PC basis for the stochastic spectral forward solution and compare
the computational cost to that of direct sampling.
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Speedup over the direct method is quite dramatic. The initial cost of the PC approach is offset by
the computation of stochastic forward solutions, but then grows very slowly. Indeed, the per-sample
cost is three orders of magnitude smaller for PC evaluations than for direct evaiuations, and thus
for even a moderate number of samples the gain in efficiency is significant. The cost of the initial sto-
chastic forward solutions is recouped for n ~ 200, and thereafter the computational time of direct sam-
pling rapidly eclipses that of the PC approach. For more complex forward models, the ratio of these
per-sample costs may widen and the cost of the stochastic forward solutions may be recouped at even

r measure peedup is to compare the computational times require
arlo estimate of /[m]. The estimate 7,[/ ()] is a random variable wit
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Fig. 7. Kullback-Leibler distance D(7||) from the direct posterior to the PC-reformulated posterior, versus p.
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Fig. 8. Computational time for Monte Carlo simulation of the posterior mean; direct evaluation versus PCe.

& <7n[f(m)]) - %Varm% [/ (m)L(m)] (35)

where the subscript m ~ p,, reflects the drawing of samples from the prior distribution. In practice, we estimate
the variance of 7, from the Monte Carlo samples using the recursive formula given in [47]. The Monte Carlo
“standard error” is then simply 0(7,, [m]). Fig. 9 shows the error thus computed and normalized by 7,[m], ver-
sus computational time, for both the direct and PC approaches. Since error decreases as n~'2, the number of
samples required to reduce the error grows rapidly. Because PC-obtained samples are inexpensive, however,
very small relative errors are achievable at negligible cost. This certainly is not true for direct sampling, as the
solid line in Fig. 9 indicates.

3.5. Markov chain Monte Carlo

Next we demonstrate the use of MCMC to simulate samples from the surrogate posterior 7t given in (25).
Since the g” chosen above are invertible linear transformations from = to .#°, the conditions following the
change of variables in (20) are satisfied. Therefore, the posterior expectation of any function f of m can be

computed in &-space, with samples from 7;, according to (23) and (26).
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Fig. 9. Relative error in Monte Carlo estimates of the posterior mean versus computational time, sampling from the prior; direct
evaluation versus PCe.

We employ a random-walk Metropolis algorithm [17] for MCMC, in which the proposal distribution ¢(:|')
is a bivariate normal centered on the current position of the chain. The standard deviation of the proposal
distribution is ¢, = 0.4. Results showing the chain position over 10,000 iterations are in Fig. 10. Visual inspec-
tion suggests that the chain mixes—i.e. moves within the support of n;—rapidly. The two-dimensional view in
Fig. 10(a) is reminiscent of the posterior contours in Fig. 6; this is not surprising, as & is just a diagonal linear
transformation of m.

A Metropolis—Hastings algorithm, such as the random-walk Metropolis sampler used here, provides for the
construction of a Markov chain with stationary distribution .. Under certain additional conditions
[15,63,49], one can establish a central limit theorem for ergodic averages f, [64]:>

_ 1 & .
fo==2 (fog)(E”) (36)
=1
Via(fu — Ex(f 0 8)) “SN(0,0%) (37)
where "% denotes convergence in distribution and
a7 = Varg,(fog) +2) _ Cove [(f 0 g)(§"), (f 0 g)(&"))] (38)

s=1

The asymptotic variance in (38) thus reflects the correlation between successive samples. Even if a central limit
theorem does not strictly hold in the form of (37), stronger correlations lead to larger variance of the MCMC
estimate at a given n and thus less efficient sampling. We plot y(s), the empirical autocovariance at lag s, in
Fig. 11 for several random-walk Metropolis samplers, varying the scale parameter of the proposal distribution
o, If 0, is too large, a great proportion of the proposed moves will be rejected, and the chain will not move
very often. If ¢, is too small, most proposed moves will be accepted but the chain will move very slowly
through the posterior support. Both of these situations are reflected in long correlations and poor mixing.
With ¢, = 0.4, however, we observe that autocovariance decays relatively quickly with lag along the chain,

2 For chains on continuous state spaces, uniform or geometric ergodicity provide for central limit theorems [15,48]. Weaker conditions
are sufficient to establish a law of large numbers. While uniform or geometric ergodicity have not been shown for Metropolis—Hastings
samplers on general state spaces, many of these samplers are conjectured to be geometrically ergodic. The chain resulting from an
independence sampler with bounded n/q is known to be uniformly ergodic [63].
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problem solutions and reduces errors in the surrogate posterior, as we observed in Sections 3.2 and 3.3. But we
must also address the larger question—essentially, what is the uncertainty that one should propagate through
the forward problem?

We explore the impact of different transformations g and PC bases using the two-dimensional source inver-
sion problem as before. We consider three “true’ source locations, ranging from the center to the edge of the
domain: m = (0.50, 0.50); m = (0.25, 0.75); and m = (0.10, 0.90). For each of these sources, we solve the deter-
ministic forward problem, then perturb the value of u at each sensor with independent samples of Gaussian
noise #7; ~ N(0,¢%), thus generating three noisy data vectors d for inference. The sensor locations/times, the
source strength and shutoff time, and the prior p,, are unchanged from previous sections.
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Fig. 13. Contours of posterior density. Gauss-Hermite PC, p = 6; ¢ = 1072, Solid lines are obtained with direct evaluations of the forward
problem; dashed lines are obtained with polynomial chaos expansions. (a) mgyue = (0.50, 0.50), (b) myye = (0.25, 0.75) and (¢) myye = (0.10,
0.90).
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For simplicity, we do not partition the prior support; i.e. we choose b = 1. To solve the inverse problem
with polynomial chaos, we thus prescribe a single set of PC expansions m = g(&). First, consider a Gauss-Her-
mite PC basis: bivariate Hermite polynomials V(&) with &; ~ N(0, 1). We prescribe a PC expansion centered
on m= (0.5, 0.5):

g8 =05+adé; i=1,2 (40)

Since = = R?, the inverse image of the support of the prior will be contained in = for any o.

Contours of the surrogate posterior density 7,, are shown in Fig. 13 for ¢ = 1072 and a sixth-order PC
basis. These are compared to the “direct” posterior =, for each source location. While agreement of the pos-
teriors is relatively good for a source in the center of the domain (Fig. 13(a)), the accuracy of the surrogate
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Fig. 14. Contours of posterior density. Gauss-Hermite PC, p = 6; ¢ = 10~. Solid lines are obtained with direct evaluations of the forward
problem; dashed lines are obtained with polynomial chaos expansions. (a) mg,e = (0.50, 0.50), (b) mge = (0.25, 0.75) and (¢) myye = (0.10,
0.90).
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posterior deteriorates rapidly as the source moves towards the upper-left corner. For my,. = (0.10, 0.90), the
surrogate posterior is centered on an entirely different area of .# than the direct posterior. This disagreement
explicitly reflects errors in the forward problem solution G(&) for & corresponding to values of m that are close
to the boundary—i.e. for |¢| = O(1/0).

Widening the density of g(£) improves agreements significantly. Fig. 14 shows posterior contours for
o = 107" and a sixth-order PC basis. Once again, the best agreement is obtained when the source is in the cen-
ter of the domain, but reasonable overlap of the posteriors is achieved even for my.,, = (0.25, 0.75). The mean
of the surrogate posterior for my... = (0.10, 0.90), while still misplaced, shows some improvement over the
o = 1072 case. Increasing the order of the PC basis to p = 9 sharpens agreement for all three source locations,
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Fig. 15. Contours of posterior density. Gauss-Hermite PC, p = 9; ¢ = 10", Solid lines are obtained with direct evaluations of the forward
problem; dashed lines are obtained with polynomial chaos expansions. (a) mgyue = (0.50, 0.50), (b) myye = (0.25, 0.75) and (¢) myye = (0.10,
0.90).
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as observed in Fig. 15. However, the key trend—deteriorating agreement as the source moves closer to the
boundary—is preserved.

It is instructive to compare these results to those obtained with a uniform-Legendre PC basis. We again use
a single partition of the prior support, with a PC expansion centered on m = (0.5, 0.5): g;= 0.5+ 0.5¢,,
&~ U(—1,1). Results with p =9 are shown in Fig. 16. Compared to the Gauss-Hermite basis at the same
order, we observe slightly poorer agreement for sources in the center of the domain, but a more consistent
level of error as the source is moved towards the boundary. Agreement of the surrogate and direct posteriors
for my.,. = (0.10, 0.90) is substantially better with uniform-Legendre PC than with any of the Gauss-Hermite
bases.
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Fig. 16. Contours of posterior density. Uniform-Legendre PC, p =9. Solid lines are obtained with direct evaluations of the forward
problem; dashed lines are obtained with polynomial chaos expansions. (2) mg,e = (0.50, 0.50), (b) mge = (0.25, 0.75) and (¢) myye = (0.10,
0.90).
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An explanation for these results may be found in the distribution of £, which is of course a defining prop-
erty of the PC basis. As noted above, error in the surrogate posterior at a particular value of m reflects error in
the stochastic forward problem solution for & = g~ '(m). Where is this error likely to occur? If, for simplicity,
one ignores aliasing errors resulting from the pseudospectral construction [21], Galerkin projection of the for-
ward problem outputs onto the PC basis minimizes ||G(g(£)) — G(&)|;2(q), where this inner-product norm is
defined by the probability measure P on (Q,%). Let £ and P induce a probability distribution on R". The
Gaussian distribution weighs errors near the origin much more strongly than errors at large |£|, whereas
the uniform distribution weighs errors equally over the entire (finite) range of &.

This weighing is consistent with the error trends in Figs. 13-16, and its impact is described more extensively
in Fig. 17. Here we compute the Kullback—Leibler divergence of © from 7 for Gauss-Hermite bases of order
p =6 and 9, while varying the scale parameter ¢ in (40). Since g{&) ~ N(0.5,67), the scale parameter controls
the standard deviation of the input uncertainty to the forward problem. The Gauss-Hermite results exhibit a
common dependence on ¢ for all three source locations. Posterior errors increase at small ¢ and large g, but
are minimized at intermediate values of o, e.g. ¢ = 10~'. If ¢ is very small, the input distribution is narrowly
centered on (0.5, 0.5) and the posterior distribution favors values of m = g(&) that lie on the edges of this input
distribution. Errors in the forward solution at these values of € receive little weight in the L*(Q) norm and thus
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Fig. 17. D(7||n) with Gauss-Hermite and uniform-Legendre PC at varying orders and source locations. Scale parameter o is the standard
deviation of input uncertainty to the forward problem in the Gauss-Hermite case. (a) m,. = (0.50, 0.50), (b) my. = (0.25, 0.75) and
(¢) Myye = (0.10, 0.90).
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lead to errors in the posterior. On the other hand, with large ¢ (e.g. ¢ > 0.1) the input distribution of g(&)
broadens to include appreciable tails outside the square domain. While values of y = m outside the unit square
S are perfectly feasible according to (30), the L*(Q) norm then penalizes errors in the stochastic forward solu-
tion for these values at the expense of errors inside the domain. As a result, posterior errors again increase.

In general, p =9 results show smaller errors than those at p = 6. The errors at p =9 and small ¢ with
m,. = (0.50, 0.50) appear to be an exception, reflecting errors at very large |€]. We find that the ratio of
the p =9 and p = 6 posterior divergences at a given ¢ varies with the realization of the measurement noise,
and thus the trends in Fig. 17 should be generalized to other data in a qualitative sense.

Fig. 17 also compares Gauss-Hermite posterior divergences to those obtained with uniform-Legendre
bases of the same order—shown as horizontal lines, since we fix g{&) ~ U(0,1) in the uniform-Legendre
case. Again, these results show strong dependence on the source location. For a source (and thus a
posterior density) in the center of the domain, it is possible to obtain lower posterior divergences with
Gauss-Hermite PC at a given order than with uniform-Legendre PC. With an appropriately-chosen scale
parameter, this is again possible for my.,. = (0.25, 0.75) at p =6, but the uniform-Legendre basis proves
more accurate at higher order (p =9). And for a source near the edge of the domain, the uniform-Legen-
dre basis provides better accuracy than the Gauss-Hermite basis at all values of the scale parameter and
both orders.

Implications of this exercise on the choice of transformation g(£) and on the choice of PC basis are as fol-
lows. One should avoid transformations or bases for which “true” value(s) of m correspond to values of & that
have small probability. The true values of m are of course unknown « priori, so an useful guideline is to ensure
that g(£) has distribution equal to the prior, approximately equal to the prior, or with longer tails than the
prior. Then the posterior probability mass is likely to fall within regions where forward problem errors are
penalized with sufficient weight in the L*(Q) norm. Of course, it is possible for very large quantities of data
to overwhelm the prior. In this case, if it is apparent that the posterior is tending towards regions of & that
have been accorded small probability—as in Figs. 13(c) and 14(c), for instance—a new choice of g or PC basis
would be indicated.

4. Conclusions

Bayesian inference provides an attractive setting for the solution of inverse problems. Measurement errors,
forward model uncertainties, and complex prior information can all be combined to yield a rigorous and
quantitative assessment of uncertainty in the inverse solution. Obtaining useful information from this poster-
ior density—e.g., computing expectations or marginal distributions of the unknown parameters—may be a
computationally expensive undertaking, however. For complex forward models, such as those that arise in
inverting systems of PDEs, the cost of likelihood evaluations may render the Bayesian approach prohibitive.

The theoretical developments in this paper fundamentally accelerate Bayesian inference in computationally
intensive inverse problems. We present a reformulation of the Bayesian approach based on polynomial chaos
representations of random variables and associated spectral methods for efficient uncertainty propagation.
Uncertain inputs that span the range of the prior define a stochastic forward problem; a Galerkin solution
of this problem with the PC basis yields a spectral representation of uncertain forward model predictions.
Evaluation of integrals over the unknown parameter space is then recast as sampling of the random variables
& underlying the PC expansion, with significant speedup. In particular, we introduce three schemes for explor-
ing the posterior: Monte Carlo sampling from the prior distribution, Monte Carlo sampling from an alternate
distribution that includes the support of the prior, and Markov chain Monte Carlo in &-space. Each of these
schemes is compatible with partitioning of the prior support.

The new approach is demonstrated on a transient diffusion problem arising in contaminant source inver-
sion. Spectral representation is found to reduce the cost of each posterior evaluation by three orders of mag-
nitude, so that sampling of the PC-reformulated problem has nearly negligible cost. Error in the surrogate
posterior decreases rapidly with increasing order of the PC basis; in the present case, convergence is exponen-
tially fast. MCMC sampling of the posterior offers considerable freedom in choosing the PC basis and the ini-
tial transformation defining the stochastic forward problem, but a detailed exploration of posterior errors
suggests guidelines for ensuring accuracy and computational efficiency.
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Ongoing work will extend the polynomial chaos approach to more complex inverse problems. For instance,
forward models with additional parametric uncertainty—parameters that may be marginalized in the poster-
ior—should be quite amenable to PC acceleration. We also plan to explore stochastic spectral approaches to
significantly higher-dimensional inverse problems, e.g. with spatially extended input parameters. A further
extension involves convective source inversion problems, with the associated challenges of spectral uncertainty
propagation in non-linear advection equations.
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